Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.641
Filter
1.
Hum Vaccin Immunother ; 20(1): 2346963, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38745461

ABSTRACT

COVID-19, caused by SARS-CoV-2, and meningococcal disease, caused by Neisseria meningitidis, are relevant infectious diseases, preventable through vaccination. Outer membrane vesicles (OMVs), released from Gram-negative bacteria, such as N. meningitidis, present adjuvant characteristics and may confer protection against meningococcal disease. Here, we evaluated in mice the humoral and cellular immune response to different doses of receptor binding domain (RBD) of SARS-CoV-2 adjuvanted by N. meningitidis C:2a:P1.5 OMVs and aluminum hydroxide, as a combined preparation for these pathogens. The immunization induced IgG antibodies of high avidity for RBD and OMVs, besides IgG that recognized the Omicron BA.2 variant of SARS-CoV-2 with intermediary avidity. Cellular immunity showed IFN-γ and IL-4 secretion in response to RBD and OMV stimuli, demonstrating immunologic memory and a mixed Th1/Th2 response. Offspring presented transferred IgG of similar levels and avidity as their mothers. Humoral immunity did not point to the superiority of any RBD dose, but the group immunized with a lower antigenic dose (0.5 µg) had the better cellular response. Overall, OMVs enhanced RBD immunogenicity and conferred an immune response directed to N. meningitidis too.


Subject(s)
Antibodies, Viral , COVID-19 , Immunoglobulin G , Neisseria meningitidis , SARS-CoV-2 , Animals , Mice , Immunoglobulin G/blood , Neisseria meningitidis/immunology , Female , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19/immunology , SARS-CoV-2/immunology , Adjuvants, Immunologic/administration & dosage , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Immunity, Cellular , Immunity, Humoral , Mice, Inbred BALB C , Meningococcal Infections/prevention & control , Meningococcal Infections/immunology , Spike Glycoprotein, Coronavirus/immunology , Adjuvants, Vaccine/administration & dosage , Aluminum Hydroxide/administration & dosage , Aluminum Hydroxide/immunology , Immunization/methods , Antibody Affinity , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Meningococcal Vaccines/immunology , Meningococcal Vaccines/administration & dosage , Immunologic Memory , Th1 Cells/immunology
2.
Front Immunol ; 13: 814088, 2022.
Article in English | MEDLINE | ID: mdl-35126397

ABSTRACT

The identification of an appropriate animal model for use in the development of meningococcal vaccines has been a challenge as humans are the only natural host for Neisseria meningitidis. Small animal models have been developed and are widely used to study the efficacy or immunogenicity of vaccine formulations generated against various diseases. Here, we describe the development and optimization of a mouse model for assessing the immunogenicity of candidate tetravalent meningococcal polysaccharide (MenACYW-TT) protein conjugate vaccines. Three inbred (BALB/c [H-2d], C3H/HeN [H-2k], or C57BL/6 [H-2b]) and one outbred (ICR [H-2g7]) mouse strains were assessed using serial two-fold dose dilutions (from 2 µg to 0.03125 µg per dose of polysaccharide for each serogroup) of candidate meningococcal conjugate vaccines. Groups of 10 mice received two doses of the candidate vaccine 14 days apart with serum samples obtained 14 days after the last dose for the evaluation of serogroup-specific anti-polysaccharide IgG by ELISA and bactericidal antibody by serum bactericidal assay (SBA). C3H/HeN and ICR mice had a more dose-dependent antibody response to all four serogroups than BALB/c and C57Bl/6 mice. In general, ICR mice had the greatest antibody dose-response range (both anti-polysaccharide IgG and bactericidal antibodies) to all four serogroups and were chosen as the model of choice. The 0.25 µg per serogroup dose was chosen as optimal since this was in the dynamic range of the serogroup-specific dose-response curves in most of the mouse strains evaluated. We demonstrate that the optimized mouse immunogenicity model is sufficiently sensitive to differentiate between conjugated polysaccharides, against unconjugated free polysaccharides and, to degradation of the vaccine formulations. Following optimization, this optimized mouse immunogenicity model has been used to assess the impact of different conjugation chemistries on immunogenicity, and to screen and stratify various candidate meningococcal conjugate vaccines to identify those with the most desirable profile to progress to clinical trials.


Subject(s)
Antibodies, Bacterial/blood , Meningococcal Infections/prevention & control , Meningococcal Vaccines/immunology , Neisseria meningitidis/immunology , Animals , Female , Immunogenicity, Vaccine , Meningococcal Infections/veterinary , Meningococcal Vaccines/administration & dosage , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Inbred ICR , Models, Animal , Serogroup , Vaccines, Conjugate/administration & dosage , Vaccines, Conjugate/immunology
3.
Lancet Child Adolesc Health ; 6(2): 96-105, 2022 02.
Article in English | MEDLINE | ID: mdl-34883094

ABSTRACT

BACKGROUND: In August, 2015, the UK implemented an emergency adolescent immunisation programme with the meningococcal ACWY conjugate vaccine to combat a national outbreak of meningococcal group W (MenW) disease due to a hypervirulent ST-11 complex strain, which is currently causing regional and national outbreaks worldwide. This immunisation programme specifically targeted adolescents aged 13-18 years, an age group with low disease incidence but high nasopharyngeal carriage, with the aim of interrupting transmission and providing indirect (herd) protection across the population. Here, we report the impact of the first 4 years of the programme in England. METHODS: Public Health England conducts meningococcal disease surveillance in England. Laboratory-confirmed cases of invasive meningococcal disease during the academic years 2010-11 to 2014-15 (Sept 1 to Aug 31) were used to predict post-vaccination trends, based on the assumption that cases would plateau 1 year after vaccine implementation (conservative scenario) or that cases would continue to rise for 4 years after vaccine implementation (extreme scenario). Vaccine uptake evaluated in August, 2019, was 37-41% in adolescents aged 18 years immunised in primary care and 71-86% in younger teenagers routinely vaccinated in school. Vaccine effectiveness was estimated with the indirect screening method. FINDINGS: MenW and MenY cases plateaued within 12 months and then declined, while MenC cases remained low throughout. Significant reductions were observed among adolescents aged 14-18 years for MenW (incidence rate ratio [IRR] 0·35 [95% CI 0·17-0·76]) and MenY (0·21 [0·07-0·59]) cases, with a non-significant reduction in MenC cases (0·11 [0·01-1·01]). Based on conservative and extreme scenarios, 205-1193 MenW cases were prevented through the indirect effects of the programme and 25 through direct protection. For MenY, an estimated 60-106 cases were prevented through the indirect effects of the programme and 19 through direct protection. Ignoring any residual effect from an earlier MenC-containing vaccine, the overall vaccine effectiveness against MenCWY disease combined was 94% (95% CI 80-99). INTERPRETATION: A meningococcal immunisation programme specifically targeting adolescent carriers succeeded in rapidly controlling a national MenW outbreak, even with moderate initial vaccine uptake. FUNDING: Public Health England.


Subject(s)
Disease Outbreaks/prevention & control , Immunization Programs , Meningococcal Infections/epidemiology , Meningococcal Infections/prevention & control , Meningococcal Vaccines/administration & dosage , Neisseria meningitidis, Serogroup W-135/immunology , Neisseria meningitidis/immunology , Adolescent , England/epidemiology , Humans , Serogroup , Vaccines, Conjugate/administration & dosage
4.
Int J Mol Sci ; 22(19)2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34638530

ABSTRACT

Outer Membrane Vesicles (OMV) constitute a promising platform for the development of efficient vaccines. OMV can be decorated with heterologous antigens (proteins or polysaccharides), becoming attractive novel carriers for the development of multicomponent vaccines. Chemical conjugation represents a tool for linking antigens, also from phylogenetically distant pathogens, to OMV. Here we develop two simple and widely applicable conjugation chemistries targeting proteins or lipopolysaccharides on the surface of Generalized Modules for Membrane Antigens (GMMA), OMV spontaneously released from Gram-negative bacteria mutated to increase vesicle yield and reduce potential reactogenicity. A Design of Experiment approach was used to identify optimal conditions for GMMA activation before conjugation, resulting in consistent processes and ensuring conjugation efficiency. Conjugates produced by both chemistries induced strong humoral response against the heterologous antigen and GMMA. Additionally, the use of the two orthogonal chemistries allowed to control the linkage of two different antigens on the same GMMA particle. This work supports the further advancement of this novel platform with great potential for the design of effective vaccines.


Subject(s)
Bacterial Proteins/immunology , Bacterial Vaccines/immunology , Extracellular Vesicles/immunology , Protozoan Proteins/immunology , Protozoan Vaccines/immunology , Animals , Antibodies, Bacterial/immunology , Antigens, Bacterial/immunology , Bacterial Proteins/chemistry , Bacterial Vaccines/biosynthesis , Female , Lipopolysaccharides/immunology , Mice , Neisseria meningitidis/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/chemistry , Protozoan Vaccines/biosynthesis , Salmonella typhimurium/immunology , Shigella sonnei/immunology
5.
PLoS One ; 16(10): e0254330, 2021.
Article in English | MEDLINE | ID: mdl-34648533

ABSTRACT

Cluster randomized trials (cRCT) to assess vaccine effectiveness incorporate indirect effects of vaccination, helping to inform vaccination policy. To calculate the sample size for a cRCT, an estimate of the intracluster correlation coefficient (ICC) is required. For infectious diseases, shared characteristics and social mixing behaviours may increase susceptibility and exposure, promote transmission and be a source of clustering. We present ICCs from a school-based cRCT assessing the effectiveness of a meningococcal B vaccine (Bexsero, GlaxoSmithKline) on reducing oropharyngeal carriage of Neisseria meningitidis (Nm) in 34,489 adolescents from 237 schools in South Australia in 2017/2018. We also explore the contribution of shared behaviours and characteristics to these ICCs. The ICC for carriage of disease-causing Nm genogroups (primary outcome) pre-vaccination was 0.004 (95% CI: 0.002, 0.007) and for all Nm was 0.007 (95%CI: 0.004, 0.011). Adjustment for social behaviours and personal characteristics reduced the ICC for carriage of disease-causing and all Nm genogroups by 25% (to 0.003) and 43% (to 0.004), respectively. ICCs are also reported for risk factors here, which may be outcomes in future research. Higher ICCs were observed for susceptibility and/or exposure variables related to Nm carriage (having a cold, spending ≥1 night out socializing or kissing ≥1 person in the previous week). In metropolitan areas, nights out socializing was a highly correlated behaviour. By contrast, smoking was a highly correlated behaviour in rural areas. A practical example to inform future cRCT sample size estimates is provided.


Subject(s)
Meningococcal Infections/immunology , Meningococcal Vaccines/immunology , Neisseria meningitidis/immunology , Adolescent , Cluster Analysis , Female , Humans , Male , Risk Factors , Schools , South Australia , Vaccination
6.
Anal Bioanal Chem ; 413(23): 5885-5900, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34341841

ABSTRACT

A peptide from the P0 acidic ribosomal protein (pP0) of ticks conjugated to keyhole limpet hemocyanin from Megathura crenulata has shown to be effective against different tick species when used in host vaccination. Turning this peptide into a commercial anti-tick vaccine will depend on finding the appropriate, technically and economically feasible way to present it to the host immune system. Two conjugates (p64K-Cys1pP0 and p64K-ßAla1pP0) were synthesized using the p64K carrier protein from Neisseria meningitidis produced in Escherichia coli, the same cross-linking reagent, and two analogues of pP0. The SDS-PAGE analysis of p64K-Cys1pP0 showed a heterogeneous conjugate compared to p64K-ßAla1pP0 that was detected as a protein band at 91kDa. The pP0/p64K ratio determined by MALDI-MS for p64K-Cys1pP0 ranged from 1 to 8, being 3-5 the predominant ratio, while in the case of p64K-ßAla1pP0 this ratio was 5-7. Cys1pP0 was partially linked to 35 out of 39 Lys residues and the N-terminal end, while ßAla1pP0 was mostly linked to the six free cysteine residues, to the N-terminal end, and, in a lesser extent, to Lys residues. The assignment of the conjugation sites and side reactions were based on the identification of type 2 peptides. Rabbit immunizations showed the best anti-pP0 titers and the highest efficacy against Rhipicephalus sanguineus ticks when the p64K-Cys1pP0 was used as vaccine antigen. The presence of high molecular mass aggregates observed in the SDS-PAGE analysis of p64K-Cys1pP0 could be responsible for a better immune response against pP0 and consequently for its better efficacy as an anti-tick vaccine. Graphical abstract.


Subject(s)
Bacterial Outer Membrane Proteins/immunology , Chromatography, Liquid/methods , Neisseria meningitidis/immunology , Tandem Mass Spectrometry/methods , Ticks/immunology , Vaccines/immunology , Animals , Electrophoresis, Polyacrylamide Gel , Hemocyanins/immunology , Rabbits , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
7.
Pediatr Infect Dis J ; 40(11): 1019-1022, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34285166

ABSTRACT

Complement deficient patients are susceptible to rare meningococcal serogroups. A 6-year-old girl presented with serogroup Z meningitis. This led to identification of a C8 deficiency. The MenB-4C vaccine induced cross-reactive antibodies to serogroup Z and increased in vitro opsonophagocytic killing and may thus protect complement deficient patients.


Subject(s)
Complement C8/deficiency , Cross Protection/immunology , Meningitis/microbiology , Meningococcal Vaccines/immunology , Neisseria meningitidis/immunology , Serogroup , Antibodies, Bacterial/immunology , Child , Cross Reactions/immunology , Female , Hereditary Complement Deficiency Diseases , Humans , Meningitis/diagnosis , Meningitis/immunology , Meningococcal Infections/prevention & control , Meningococcal Vaccines/administration & dosage , Neisseria meningitidis/classification , Opsonization
8.
Biochem J ; 478(8): 1485-1509, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33881487

ABSTRACT

Carbohydrate-binding antibodies play diverse and critical roles in human health. Endogenous carbohydrate-binding antibodies that recognize bacterial, fungal, and other microbial carbohydrates prevent systemic infections and help maintain microbiome homeostasis. Anti-glycan antibodies can have both beneficial and detrimental effects. For example, alloantibodies to ABO blood group carbohydrates can help reduce the spread of some infectious diseases, but they also impose limitations for blood transfusions. Antibodies that recognize self-glycans can contribute to autoimmune diseases, such as Guillain-Barre syndrome. In addition to endogenous antibodies that arise through natural processes, a variety of vaccines induce anti-glycan antibodies as a primary mechanism of protection. Some examples of approved carbohydrate-based vaccines that have had a major impact on human health are against pneumococcus, Haemophilus influeanza type b, and Neisseria meningitidis. Monoclonal antibodies specifically targeting pathogen associated or tumor associated carbohydrate antigens (TACAs) are used clinically for both diagnostic and therapeutic purposes. This review aims to highlight some of the well-studied and critically important applications of anti-carbohydrate antibodies.


Subject(s)
Guillain-Barre Syndrome/immunology , Haemophilus Infections/immunology , Meningitis, Meningococcal/immunology , Pneumonia, Pneumococcal/immunology , Polysaccharides/immunology , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/therapeutic use , Autoantibodies/biosynthesis , Autoantibodies/blood , Bacterial Vaccines/biosynthesis , Bacterial Vaccines/therapeutic use , Carbohydrate Sequence , Guillain-Barre Syndrome/pathology , Haemophilus Infections/microbiology , Haemophilus Infections/prevention & control , Haemophilus Vaccines/biosynthesis , Haemophilus Vaccines/therapeutic use , Haemophilus influenzae/immunology , Humans , Meningitis, Meningococcal/microbiology , Meningitis, Meningococcal/prevention & control , Neisseria meningitidis/immunology , Pneumococcal Vaccines/biosynthesis , Pneumococcal Vaccines/therapeutic use , Pneumonia, Pneumococcal/microbiology , Pneumonia, Pneumococcal/prevention & control , Polysaccharides/antagonists & inhibitors , Polysaccharides/chemistry , Streptococcus pneumoniae/immunology
9.
Glycoconj J ; 38(4): 401-409, 2021 08.
Article in English | MEDLINE | ID: mdl-33905086

ABSTRACT

Neisseria meningitidis is a major cause of bacterial meningitidis worldwide. Children less than five years and adolescents are particularly affected. Nearly all invasive strains are surrounded by a polysaccharide capsule, based on which, 12 N. meningitidis serogroups are differentiated. Six of them, A, B, C, W, X, and Y, cause the vast majority of infections in humans. Mono- and multi-valent carbohydrate-based vaccines against meningococcal infections have been licensed or are currently in clinical development. In this mini-review, an overview of the past and present approaches for producing meningococcal glycoconjugate vaccines is provided.


Subject(s)
Glycoconjugates/chemistry , Meningococcal Infections/prevention & control , Meningococcal Vaccines/immunology , Humans , Meningococcal Infections/microbiology , Neisseria meningitidis/classification , Neisseria meningitidis/immunology , Vaccines, Conjugate/immunology
10.
Epidemiol Infect ; 149: e90, 2021 04 05.
Article in English | MEDLINE | ID: mdl-33814028

ABSTRACT

Invasive meningococcal disease has high morbidity and mortality, with infants and young children among those at greatest risk. This phase III, open-label, randomised study in toddlers aged 12-23 months evaluated the immunogenicity and safety of meningococcal tetanus toxoid-conjugate vaccine (MenACYW-TT), a tetanus toxoid conjugated vaccine against meningococcal serogroups A, C, W and Y, when coadministered with paediatric vaccines (measles, mumps and rubella [MMR]; varicella [V]; 6-in-1 combination vaccine against diphtheria, tetanus, pertussis, polio, hepatitis B and Haemophilus influenzae type b [DTaP-IPV-HepB-Hib] and pneumococcal conjugate vaccine [PCV13])(NCT03205371). Immunogenicity to each meningococcal serogroup was assessed by serum bactericidal antibody assay using human complement (hSBA). Vaccine safety profiles were described up to 30 days post-vaccination. A total of 1183 participants were enrolled. The proportion with seroprotection (hSBA ≥1:8) to each meningococcal serogroup at Day 30 was comparable between the MenACYW-TT and MenACYW-TT + MMR + V groups (≥92 and ≥96%, respectively), between the MenACYW-TT and MenACYW-TT + DTaP-IPV-HepB-Hib groups (≥90% for both) and between the MenACYW-TT and MenACYW-TT + PCV13 groups (≥91 and ≥84%, respectively). The safety profiles of MenACYW-TT, and MMR + V, DTaP-IPV-HepB-Hib, and PCV13, with or without MenACYW-TT, were generally comparable. Coadministration of MenACYW-TT with paediatric vaccines in toddlers had no clinically relevant effect on the immunogenicity and safety of any of the vaccines.


Subject(s)
Meningococcal Infections/prevention & control , Meningococcal Vaccines/immunology , Neisseria meningitidis/immunology , Antibodies, Bacterial/blood , Antibodies, Viral/blood , Chickenpox Vaccine/administration & dosage , Chickenpox Vaccine/immunology , Diphtheria-Tetanus-Pertussis Vaccine/administration & dosage , Diphtheria-Tetanus-Pertussis Vaccine/immunology , Female , Haemophilus Vaccines/administration & dosage , Haemophilus Vaccines/immunology , Hepatitis B Vaccines/administration & dosage , Hepatitis B Vaccines/immunology , Humans , Immunogenicity, Vaccine , Infant , Male , Measles-Mumps-Rubella Vaccine/administration & dosage , Measles-Mumps-Rubella Vaccine/immunology , Pneumococcal Vaccines/administration & dosage , Pneumococcal Vaccines/immunology , Poliovirus Vaccine, Inactivated/administration & dosage , Poliovirus Vaccine, Inactivated/immunology , Safety , Serogroup , Vaccines, Combined/administration & dosage , Vaccines, Combined/immunology
11.
J Immunol Methods ; 493: 113037, 2021 06.
Article in English | MEDLINE | ID: mdl-33722512

ABSTRACT

Traditional ELISA-based protein analysis has been predicated on the assumption that proteins bind randomly to the solid surface of the ELISA plate polymer (polystyrene or polyvinyl chloride). Random adherence to the plate ensures equal access to all faces of the protein, an important consideration when evaluating immunogenicity of polyclonal serum samples as well as when examining the cross-reactivity of immune serum against different antigenic variants of a protein. In this study we demonstrate that the soluble form of the surface lipoprotein transferrin binding protein B (TbpB) from three different bacterial pathogens (Neisseria meningitidis, Actinobacillus pleuropneumoniae, and Mannheimia haemolytica) bind the ELISA plate in a manner that consistently obscures the transferrin binding face of the proteins' N-lobe. In order to develop a non-biased ELISA where all faces of the protein are accessible, the strong interaction between biotin and avidin has been exploited by adding a biotin tag to these proteins during Escherichia coli-based cytoplasmic expression and utilizing streptavidin or neutravidin coated ELISA plates for protein capture and display. The use of avidin coated ELISA plates also allows for rapid purification of biotin-tagged proteins from crude E. coli lysates, removing the requirement of prior affinity purification of each protein to be included in the ELISA-based analyses. In proof of concept experiments we demonstrate the utility of this approach for evaluating immunogenicity and cross-reactivity of serum from mice and pigs immunized with TbpBs from human and porcine pathogens.


Subject(s)
Actinobacillus pleuropneumoniae/chemistry , Enzyme-Linked Immunosorbent Assay , Mannheimia haemolytica/chemistry , Neisseria meningitidis/chemistry , Transferrin-Binding Protein B/immunology , Actinobacillus pleuropneumoniae/immunology , Avidin/chemistry , Avidin/immunology , Biotin/chemistry , Biotin/immunology , Mannheimia haemolytica/immunology , Neisseria meningitidis/immunology , Polystyrenes/chemistry , Polyvinyl Chloride/chemistry , Transferrin-Binding Protein B/chemistry
12.
Pediatr Infect Dis J ; 40(4): 375-381, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33591079

ABSTRACT

BACKGROUND: Overall, there are over 30 different sexually transmitted infections with Neisseria gonorrhoeae being the third most frequent with a reported 78 million cases per year. Gonococcal infection causes genital inflammation, which can be a risk factor for others sexually transmitted infections, particularly human immunodeficiency virus. Gonorrhea is a treatable disease, but recently an increase in antibiotic resistance has been of concern. There are currently no vaccines available. However, parenteral vaccination with anti N. meningitidis serogroup B vaccine has been reported to decrease the incidence of gonococcal burden in New Zealand and in Cuba despite the fact that parenteral vaccination is not deemed to induce mucosal IgA. Here we explore possible mechanisms of protection against gonococcal infection through parenteral meningococcal B vaccination. METHODS: Ninety-two serum, saliva and oropharyngeal swabs samples of young adults (healthy and Neisseria carriers) of the internal higher school were obtained. They have been vaccinated with VA-MENGOC-BC (MBV) during their infancy and boosted with a third dose during this study. Serum and saliva samples were analyzed by ELISA and Western blot to measured IgG and IgA antibodies against N. meningitidis and N. gonorrhoeae antigens. N. meningitidis carriers were determined by standard microbiologic test. In addition, we reviewed epidemiologic data for N. meningitidis and N. gonorrhoeae infections in Cuba. RESULTS: Epidemiologic data show the influence of MBV over gonorrhea incidence suggesting to be dependent of sexual arrival age of vaccines but not over syphilis. Laboratorial data permit the detection of 70 and 22 noncarriers and carriers of N. meningitidis, respectively. Serum anti-MBV antigens (PL) responses were boosted by a third dose and were independent of carriage stages, but saliva anti-PL IgA responses were only present and were significant induced in carriers subjects. Carriers boosted with a third dose of MBV induced similar antigonococcal and -PL saliva IgA and serum IgG responses; meanwhile, serum antigonococcal IgG was significantly lower. In saliva, at least 2 gonococcal antigens were identified by Western blot. Finally, gonococcal-specific mucosal IgA antibody responses, in addition to the serum IgG antibodies, might contributed to the reduction of the incidence of N. gonorrhoeae. We hypothesize that this might have contributed to the observed reductions of the incidence of N. gonorrhoeae. CONCLUSION: These results suggest a mechanism for the influence of a Proteoliposome-based meningococcal BC vaccine on gonococcal incidence.


Subject(s)
Antibodies, Bacterial/blood , Gonorrhea/prevention & control , Immunity, Mucosal/immunology , Meningococcal Vaccines/immunology , Neisseria gonorrhoeae/immunology , Neisseria meningitidis/immunology , Vaccination/methods , Adolescent , Cross Reactions , Cuba/epidemiology , Female , Gonorrhea/epidemiology , Humans , Incidence , Injections, Intramuscular , Male , Meningococcal Vaccines/administration & dosage , Proteolipids/administration & dosage , Proteolipids/chemistry , Proteolipids/immunology , Saliva/immunology , Serogroup , Young Adult
13.
Int Immunopharmacol ; 93: 107411, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33548582

ABSTRACT

Neisseria meningitidis (N. meningitidis) is a human-specific pathogen and a major cause of meningitis and septicemia with a high case fatality rate. N. meningitidis may penetrate the nasopharyngeal mucosal membrane and cause severe meningitis, a mucosal immune response plays a key role in the defense against meningococcal infections. Our previous study demonstrated that N. meningitidis serogroup B 0315 (NMB0315) was a vaccine candidate against N. meningitidis serogroup B (NMB) through parenteral immunization. In this study, immunopotentiators (C48/80 or CpG-ODN) were loaded into chitosan nanoparticle (Chi NP) to form combination adjuvants (Chi-CpG NP and Chi-C48/80 NP) and adopted to enhance the immunogenicity of NMB0315 through intranasal immunization. The experimental results have indicated that both Chi-CpG NP and Chi-C48/80 NP are effective mucosal adjuvants for the induction of significantly higher rNMB0315-specific IgG, IgG1, IgG2a and sIgA antibodies. Meanwhile, Chi-CpG NP and Chi-C48/80 NP could change the ratio of IgG1/IgG2a, inducing a more balanced cellular/humoral immune response. Chi-CpG NP and Chi-C48/80 NP also boosted interleukin-4 (IL-4), interferon-γ (IFN-γ) and interleukin-17 A (IL-17A) production by splenocytes. The bactericidal antibodies have been detected in sera from mice immunized with rNMB0315 + Chi-CpG NP and rNMB0315 + Chi-C48/80 NP. Overall, the combination adjuvants could be applicable to the development of a mucosal vaccine against NMB.


Subject(s)
Antigens, Viral/administration & dosage , Bacterial Vaccines/immunology , Meningococcal Infections/immunology , Nanoparticles/administration & dosage , Neisseria meningitidis/immunology , Adjuvants, Immunologic , Administration, Intranasal , Animals , Antigens, Viral/chemistry , Chitosan/chemistry , Cytokines/metabolism , Female , Humans , Immunity , Immunization , Mice , Mice, Inbred BALB C , Nanoparticles/chemistry , Serogroup , Vaccination
14.
J Med Microbiol ; 70(3)2021 Mar.
Article in English | MEDLINE | ID: mdl-33544069

ABSTRACT

Invasive meningococcal disease (IMD) is a major cause of meningitis and septicaemia worldwide. The switches in serogroup predominance contribute to the unpredictable nature of the disease with significant health impacts. The aim of this study was to determine the epidemiological profile of IMD in Rio Grande do Sul, Santa Catarina and Paraná, three states in the south of Brazil. All meningitis cases confirmed by clinical and/or laboratory criteria notified to the national information system for notifiable diseases between 2015 and 2019 were analysed. Proportions of serogroup and incidence by age were calculated. A total of 17 894 cases of IMD were reported during this period. Of these, 9029 cases (50 %) were due to serogroup C. Furthermore, serogroup W was responsible for almost half of the cases among children younger than 5 years old during 2017 and 2018, with an overall incidence of 33.3 cases per 100 000 infants. Despite the reduction in serogroup C after the introduction of meningococcal C conjugate vaccine into a childhood immunization programme in Brazil, it remains a significant healthcare issue in the south of the country. Changes in disease epidemiology were observed and serogroup W was the most common among children below 5 years of age in 2017 and 2018. Although future cost-effectiveness studies are necessary, our results could have future implications for meningococcal vaccination programmes.


Subject(s)
Immunization Programs/statistics & numerical data , Meningococcal Infections/epidemiology , Meningococcal Infections/prevention & control , Age Distribution , Brazil/epidemiology , Epidemiological Monitoring , Immunization , Immunization Programs/trends , Incidence , Meningococcal Infections/microbiology , Meningococcal Vaccines/administration & dosage , Neisseria meningitidis/classification , Neisseria meningitidis/immunology , Neisseria meningitidis/isolation & purification , Serogroup
15.
Lancet Infect Dis ; 21(5): 688-696, 2021 05.
Article in English | MEDLINE | ID: mdl-33428870

ABSTRACT

BACKGROUND: The use of the multicomponent meningococcal vaccine 4CMenB in the UK schedule at 2, 4, and 12 months of age has been shown to be 59·1% effective at preventing invasive group B meningococcal disease. Here, we report the first data on the immunogenicity of this reduced-dose schedule to help to interpret this effectiveness estimate. METHODS: In this multicentre, parallel-group, open-label, randomised clinical trial, infants aged up to 13 weeks due to receive their primary immunisations were recruited via child health database mailouts in Oxfordshire and via general practice surgeries in Gloucestershire and Hertfordshire. Infants were randomly assigned (1:1) with permuted block randomisation to receive a 2 + 1 (2, 4, and 12 months; group 1) or 1 + 1 (3 and 12 months; group 2) schedule of the 13-valent pneumococcal conjugate vaccine (PCV13). All infants also received 4CMenB at 2, 4, and 12 months of age, and had blood samples taken at 5 and 13 months. Participants and clinical trial staff were not masked to treatment allocation. Proportions of participants with human complement serum bactericidal antibody (hSBA) titres of at least 4 were determined for group B meningococcus (MenB) reference strains 5/99 (Neisserial Adhesin A [NadA]), NZ98/254 (porin A), and 44/76-SL (factor H binding protein [fHbp]). Geometric mean titres (GMTs) with 95% CIs were also calculated, and concomitant vaccine responses (group C meningococcus [MenC], Haemophilus influenzae b [Hib], tetanus, diphtheria, and pertussis) were compared between groups. The primary outcome was PCV13 immunogenicity, with 4CMenB immunogenicity and reactogenicity as secondary outcomes. All individuals by randomised group with a laboratory result were included in the analysis. The study is registered on the EudraCT clinical trials database, 2015-000817-32, and ClinicalTrials.gov, NCT02482636, and is complete. FINDINGS: Between Sept 22, 2015, and Nov 1, 2017, of 376 infants screened, 213 were enrolled (106 in group 1 and 107 in group 2). 204 samples post-primary immunisation and 180 post-boost were available for analysis. The proportion of participants with hSBA of at least 4 was similar in the two study groups. For strain 5/99, all participants developed hSBA titres above 4 in both groups and at both timepoints. For strain 44/76-SL, these proportions were 95·3% (95% CI 88·5-98·7) or above post-priming (82 of 86 participants in group 1), and 92·4% (84·2-97·2) or above post-boost (73 of 79 participants in group 1). For strain NZ98/254, these proportions were 86·5% (78·0-92·6) or above post-priming (83 of 96 participants in group 2) and 88·6% (79·5-94·7) or above post-boost (70 of 79 participants in group 1). The MenC rabbit complement serum bactericidal antibody (rSBA) titre in group 1 was significantly higher than in group 2 (888·3 vs 540·4; p=0·025). There was no significant difference in geometric mean concentrations between groups 1 and 2 for diphtheria, tetanus, Hib, and pertussis post-boost. A very small number of children did not have a protective response against 44/76-SL and NZ98/254. Local and systemic reactions were similar between the two groups, apart from the 3 month timepoint when one group received an extra dose of PCV13 and recorded more systemic reactions. INTERPRETATION: These data support the recent change to the licensed European schedule for 4CMenB to add an infant 2 + 1 schedule, as used in the routine UK vaccine programme with an effectiveness of 59·1%. When compared with historical data, our data do not suggest that effectiveness would be higher with a 3 + 1 schedule, however a suboptimal boost response for bactericidal antibodies against vaccine antigen fHbp suggests a need for ongoing surveillance for vaccine breakthroughs due to fHbp-matched strains. Changing from a 2 + 1 to a 1 + 1 schedule for PCV13 for the UK is unlikely to affect protection against diphtheria, tetanus, and Hib, however an unexpected reduction in bactericidal antibodies against MenC seen with the new schedule suggests that ongoing surveillance for re-emergent MenC disease is important. FUNDING: Bill & Melinda Gates Foundation and the National Institute for Health Research.


Subject(s)
Immunization Schedule , Immunogenicity, Vaccine/immunology , Meningococcal Infections/prevention & control , Meningococcal Vaccines/immunology , Animals , Antibodies, Bacterial , Humans , Infant , Meningococcal Vaccines/administration & dosage , Neisseria meningitidis/immunology , Neisseria meningitidis, Serogroup C , Pneumococcal Vaccines , Rabbits , Tetanus Toxoid , United Kingdom , Vaccination , Vaccines, Conjugate/immunology
16.
Virulence ; 12(1): 389-403, 2021 12.
Article in English | MEDLINE | ID: mdl-33459578

ABSTRACT

Neisseria meningitidis (meningococcus) is a common bacterial colonizer of the human nasopharynx but can occasionally cause very severe systemic infections with rapid onset. Meningococci are able to degrade IgA encountered during colonization of mucosal membranes using their IgA1-specific serine protease. During systemic infection, specific IgG can induce complement-mediated lysis of the bacterium. However, meningococcal immune evasion mechanisms in thwarting IgG remain undescribed. In this study, we report for the first time that the meningococcal IgA1-specific serine protease is able to degrade IgG3 in addition to IgA. The IgG3 heavy chain is specifically cleaved in the lower hinge region thereby separating the antigen binding part from its effector binding part. Through molecular characterization, we demonstrate that meningococcal IgA1-specific serine protease of cleavage type 1 degrades both IgG3 and IgA, whereas cleavage type 2 only degrades IgA. Epidemiological analysis of 7581 clinical meningococcal isolates shows a significant higher proportion of cleavage type 1 among isolates from invasive cases compared to carrier cases, regardless of serogroup. Notably, serogroup W cc11 which is an increasing cause of invasive meningococcal disease globally harbors almost exclusively cleavage type 1 protease. Our study also shows an increasing prevalence of meningococcal isolates encoding IgA1P cleavage type 1 compared to cleavage type 2 during the observed decade (2010-2019). Altogether, our work describes a novel mechanism of IgG3 degradation by meningococci and its association to invasive meningococcal disease.


Subject(s)
Immunoglobulin G/metabolism , Neisseria meningitidis/enzymology , Neisseria meningitidis/genetics , Serine Endopeptidases/metabolism , Serine Proteases/metabolism , Humans , Immunoglobulin G/immunology , Meningococcal Infections/microbiology , Neisseria meningitidis/immunology , Neisseria meningitidis/pathogenicity , Serine/metabolism , Serine Proteases/genetics , Serine Proteases/immunology
17.
Front Immunol ; 12: 781280, 2021.
Article in English | MEDLINE | ID: mdl-34987509

ABSTRACT

The development of more effective, accessible, and easy to administer COVID-19 vaccines next to the currently marketed mRNA, viral vector, and whole inactivated virus vaccines is essential to curtailing the SARS-CoV-2 pandemic. A major concern is reduced vaccine-induced immune protection to emerging variants, and therefore booster vaccinations to broaden and strengthen the immune response might be required. Currently, all registered COVID-19 vaccines and the majority of COVID-19 vaccines in development are intramuscularly administered, targeting the induction of systemic immunity. Intranasal vaccines have the capacity to induce local mucosal immunity as well, thereby targeting the primary route of viral entry of SARS-CoV-2 with the potential of blocking transmission. Furthermore, intranasal vaccines offer greater practicality in terms of cost and ease of administration. Currently, only eight out of 112 vaccines in clinical development are administered intranasally. We developed an intranasal COVID-19 subunit vaccine, based on a recombinant, six-proline-stabilized, D614G spike protein (mC-Spike) of SARS-CoV-2 linked via the LPS-binding peptide sequence mCramp (mC) to outer membrane vesicles (OMVs) from Neisseria meningitidis. The spike protein was produced in CHO cells, and after linking to the OMVs, the OMV-mC-Spike vaccine was administered to mice and Syrian hamsters via intranasal or intramuscular prime-boost vaccinations. In all animals that received OMV-mC-Spike, serum-neutralizing antibodies were induced upon vaccination. Importantly, high levels of spike-binding immunoglobulin G (IgG) and A (IgA) antibodies in the nose and lungs were only detected in intranasally vaccinated animals, whereas intramuscular vaccination only induced an IgG response in the serum. Two weeks after their second vaccination, hamsters challenged with SARS-CoV-2 were protected from weight loss and viral replication in the lungs compared to the control groups vaccinated with OMV or spike alone. Histopathology showed no lesions in lungs 7 days after challenge in OMV-mC-Spike-vaccinated hamsters, whereas the control groups did show pathological lesions in the lung. The OMV-mC-Spike candidate vaccine data are very promising and support further development of this novel non-replicating, needle-free, subunit vaccine concept for clinical testing.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , Immunity, Mucosal/immunology , SARS-CoV-2/immunology , Administration, Intranasal , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/epidemiology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Cytoplasmic Vesicles/immunology , Female , Humans , Immunoglobulin A/immunology , Mesocricetus , Mice, Inbred BALB C , Neisseria meningitidis/immunology , Pandemics/prevention & control , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Vaccination/methods , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology
18.
PLoS Pathog ; 16(12): e1008602, 2020 12.
Article in English | MEDLINE | ID: mdl-33290434

ABSTRACT

There is a pressing need for a gonorrhea vaccine due to the high disease burden associated with gonococcal infections globally and the rapid evolution of antibiotic resistance in Neisseria gonorrhoeae (Ng). Current gonorrhea vaccine research is in the stages of antigen discovery and the identification of protective immune responses, and no vaccine has been tested in clinical trials in over 30 years. Recently, however, it was reported in a retrospective case-control study that vaccination of humans with a serogroup B Neisseria meningitidis (Nm) outer membrane vesicle (OMV) vaccine (MeNZB) was associated with reduced rates of gonorrhea. Here we directly tested the hypothesis that Nm OMVs induce cross-protection against gonorrhea in a well-characterized female mouse model of Ng genital tract infection. We found that immunization with the licensed Nm OMV-based vaccine 4CMenB (Bexsero) significantly accelerated clearance and reduced the Ng bacterial burden compared to administration of alum or PBS. Serum IgG and vaginal IgA and IgG that cross-reacted with Ng OMVs were induced by 4CMenB vaccination by either the subcutaneous or intraperitoneal routes. Antibodies from vaccinated mice recognized several Ng surface proteins, including PilQ, BamA, MtrE, NHBA (known to be recognized by humans), PorB, and Opa. Immune sera from both mice and humans recognized Ng PilQ and several proteins of similar apparent molecular weight, but MtrE was only recognized by mouse serum. Pooled sera from 4CMenB-immunized mice showed a 4-fold increase in serum bactericidal50 titers against the challenge strain; in contrast, no significant difference in bactericidal activity was detected when sera from 4CMenB-immunized and unimmunized subjects were compared. Our findings directly support epidemiological evidence that Nm OMVs confer cross-species protection against gonorrhea, and implicate several Ng surface antigens as potentially protective targets. Additionally, this study further defines the usefulness of murine infection model as a relevant experimental system for gonorrhea vaccine development.


Subject(s)
Cross Protection/immunology , Meningococcal Vaccines/pharmacology , Neisseria gonorrhoeae/immunology , Animals , Antigens, Bacterial/immunology , Bacterial Outer Membrane Proteins/immunology , Bacterial Vaccines/immunology , Case-Control Studies , Cross Reactions/immunology , Female , Gonorrhea/immunology , Humans , Immune Sera/immunology , Immunization/methods , Male , Meningococcal Infections/microbiology , Meningococcal Vaccines/immunology , Meningococcal Vaccines/metabolism , Mice , Mice, Inbred BALB C , Neisseria meningitidis/immunology , Neisseria meningitidis, Serogroup B/immunology , Retrospective Studies , Serogroup , Vaccination/methods
19.
Proc Natl Acad Sci U S A ; 117(47): 29795-29802, 2020 11 24.
Article in English | MEDLINE | ID: mdl-33158970

ABSTRACT

Meningococcal meningitis remains a substantial cause of mortality and morbidity worldwide. Until recently, countries in the African meningitis belt were susceptible to devastating outbreaks, largely attributed to serogroup A Neisseria meningitidis (MenA). Vaccination with glycoconjugates of MenA capsular polysaccharide led to an almost complete elimination of MenA clinical cases. To understand the molecular basis of vaccine-induced protection, we generated a panel of oligosaccharide fragments of different lengths and tested them with polyclonal and monoclonal antibodies by inhibition enzyme-linked immunosorbent assay, surface plasmon resonance, and competitive human serum bactericidal assay, which is a surrogate for protection. The epitope was shown to optimize between three and six repeating units and to be O-acetylated. The molecular interactions between a protective monoclonal antibody and a MenA capsular polysaccharide fragment were further elucidated at the atomic level by saturation transfer difference NMR spectroscopy and X-ray crystallography. The epitope consists of a trisaccharide anchored to the antibody via the O- and N-acetyl moieties through either H-bonding or CH-π interactions. In silico docking showed that 3-O-acetylation of the upstream residue is essential for antibody binding, while O-acetate could be equally accommodated at three and four positions of the other two residues. These results shed light on the mechanism of action of current MenA vaccines and provide a foundation for the rational design of improved therapies.


Subject(s)
Epitopes/immunology , Meningitis, Meningococcal/prevention & control , Meningococcal Vaccines/immunology , Neisseria meningitidis/immunology , Polysaccharides, Bacterial/immunology , Acetylation , Adolescent , Antibodies, Bacterial/chemistry , Antibodies, Bacterial/immunology , Child , Clinical Trials, Phase II as Topic , Crystallography, X-Ray , Female , Humans , Immunogenicity, Vaccine , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/immunology , Male , Meningitis, Meningococcal/immunology , Meningitis, Meningococcal/microbiology , Meningococcal Vaccines/therapeutic use , Molecular Docking Simulation , Multicenter Studies as Topic , Polysaccharides, Bacterial/chemistry , Randomized Controlled Trials as Topic , Serogroup , Serum Bactericidal Antibody Assay , Vaccines, Conjugate/immunology , Vaccines, Conjugate/therapeutic use
20.
PLoS Pathog ; 16(10): e1008882, 2020 10.
Article in English | MEDLINE | ID: mdl-33007046

ABSTRACT

Neisseria meningitidis serogroup B (MenB) is the leading cause of meningococcal meningitis and sepsis in industrialized countries, with the highest incidence in infants and adolescents. Two recombinant protein vaccines that protect against MenB are now available (i.e. 4CMenB and MenB-fHbp). Both vaccines contain the Factor H Binding Protein (fHbp) antigen, which can bind the Human Factor H (fH), the main negative regulator of the alternative complement pathway, thus enabling bacterial survival in the blood. fHbp is present in meningococcal strains as three main variants which are immunologically distinct. Here we sought to obtain detailed information about the epitopes targeted by anti-fHbp antibodies induced by immunization with the 4CMenB multicomponent vaccine. Thirteen anti-fHbp human monoclonal antibodies (mAbs) were identified in a library of over 100 antibody fragments (Fabs) obtained from three healthy adult volunteers immunized with 4CMenB. Herein, the key cross-reactive mAbs were further characterized for antigen binding affinity, complement-mediated serum bactericidal activity (SBA) and the ability to inhibit binding of fH to live bacteria. For the first time, we identified a subset of anti-fHbp mAbs able to elicit human SBA against strains with all three variants and able to compete with human fH for fHbp binding. We present the crystal structure of fHbp v1.1 complexed with human antibody 4B3. The structure, combined with mutagenesis and binding studies, revealed the critical cross-reactive epitope. The structure also provided the molecular basis of competition for fH binding. These data suggest that the fH binding site on fHbp v1.1 can be accessible to the human immune system upon immunization, enabling elicitation of human mAbs broadly protective against MenB. The novel structural, biochemical and functional data are of great significance because the human vaccine-elicited mAbs are the first reported to inhibit the binding of fH to fHbp, and are bactericidal with human complement. Our studies provide molecular insights into the human immune response to the 4CMenB meningococcal vaccine and fuel the rationale for combined structural, immunological and functional studies when seeking deeper understanding of the mechanisms of action of human vaccines.


Subject(s)
Antibodies/immunology , Antigens, Bacterial/metabolism , Bacterial Proteins/metabolism , Meningitis, Meningococcal/immunology , Meningococcal Vaccines/administration & dosage , Neisseria meningitidis/immunology , Adult , Antibodies/blood , Antigens, Bacterial/immunology , Bacterial Proteins/immunology , Complement Factor H/immunology , Complement Factor H/metabolism , Humans , Meningitis, Meningococcal/metabolism , Meningitis, Meningococcal/microbiology , Meningitis, Meningococcal/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...